Subgrain lath martensite mechanics: A numerical–experimental analysis

نویسنده

  • F. Maresca
چکیده

Lath martensite reveals a specific hierarchical subgrain structure, with laths, blocks and packets of particular crystallography. The presence of interlath retained austenite layers has been reported in the literature. This paper investigates the potential influence of the interlath retained austenite on the mechanical behaviour of lath martensite subgrains. To this purpose, a martensite grain substructure is modelled using a crystal plasticity framework, with a BCC lath–FCC austenite bicrystal at the fine scale. The main novel contribution of this work is the validation of the hypothesis on the role of the interlath retained austenite in lath martensite using the experimental results reported in the literature. The main features of the experimentally observed deformation behaviour (stress–strain curve, slip activity and roughness pattern) are qualitatively well reproduced by the model. It is shown that the presence of austenite interlath films has the potential to remarkably enhance the local deformation of martensite. In spite of its minor volume fraction, it plays a major role in the orientation dependent mechanical behaviour of the aggregate. It is also shown that if the presence of interlath austenite is neglected, the observed experimental flow curves are not captured. & 2014 Elsevier Ltd. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Crystallographic Analysis of Lath Martensite in Ferrite-Martensite Dual Phase Steel Sheet Annealed after Cold-Rolling

The martensite steels produced by quenching and tempering has been used for machine structural use. Martensite in ferrite-martensite dual-phase steels (hereinafter, DP steels) also has important roll in strengthening of the automobile steel sheets. Therefore the importance of analyzing the microstructure and their mechanical properties of the martensite has been increased year by year. Many res...

متن کامل

MODIFYING THE MICROSTRUCTURE AND PROPERTY OF 30CrMnSi STEEL BY SUBCRITICAL AUSTENITE REVERSE TRANSFORMATION QUENCHING

Article history: Received: 23.12.2013. Received in revised form: 15.01.2014. Accepted: 15.01.2014. Subcritical austenite reverse transformation quenching was used to improve the mechanical properties of 30CrMnSi steel, and the microstructure and mechanical properties of the samples were analyzed by subcritical austenite reverse transformation quenching. Experimental results show that subcritica...

متن کامل

Carbon Diffusion and Kinetics During the Lath Martensite Formation

Calculations verify that carbon diffusion may occur during the lath martensite fomtion. Accordingly,the diffusion of int2rstitial ator ions must be taka into account nhfn martmitic transformtion is defined as a diffusionless transformation. In derivation of the kinetics equation of the ath& martensitic transfomtion,rzgardng the c a r h diffusion, i .e.the enrichment of the austenite during the ...

متن کامل

Thermally activated growth of lath martensite in Fe- Cr-Ni-Al precipitation hardenable stainless steel

The austenite-to-martensite transformation in a partially hardened stainless steel containing 17wt %Cr, 7wt %Ni and 1wt % Al was investigated with Vibrating Sample Magnetometry and Electron Back-Scatter Diffraction. Magnetometry demonstrated that measurable martensite formation can be suppressed on fast cooling to 77K as well as on subsequent fast heating to 373 K. Surprisingly, martensite form...

متن کامل

Thermally activated growth of lath martensite in Fe–Cr–Ni–Al stainless steel

The austenite-to-martensite transformation in a partially hardened stainless steel containing 17wt %Cr, 7wt %Ni and 1wt % Al was investigated with Vibrating Sample Magnetometry and Electron Back-Scatter Diffraction. Magnetometry demonstrated that measurable martensite formation can be suppressed on fast cooling to 77K as well as on subsequent fast heating to 373 K. Surprisingly, martensite form...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017